
Fundamental ISSUI?S in Experimental Design

The methods of slalislical design of
experiments (DOE) can bc complex.
This crmplexi[y  nmkes it seem that DOE
is an arcane science, needed only for spe-
cial circumstances and not for [hc warp
and weft of engineering and scientific
practice. As a resul[,  DOE still languish-
es as a (Oo-lit[le used and appreciated dis-
cipline, even tilough (hesc mcthcxis were
developed more [ban 75 years ago by
R.A. Fisher and his colleagues. This is a
[ragcdy.  One can only specoia[e  al [ilc
progress M could have been nmle and
(I1c resources saved ilad DOE been
adopted as [bc s[amiard  approtich 10 cx-
Pcrimcn[a[ion.

Adop[ing DOE dots I1OI require IM
arrnics of sta[is(icians be marshalcci. As 1
mcn[ioncd  in April’s column, [hc funda-
mcn[al princip]cs a n d  me[llods  are
straightforward and can easily bc (au.gh[
as part of basic scicncc and ma[h educa-
tion.’ Every scien[ist, engineer, and [ech-
nologist—indccci, anyone wishing to in-
tcrac[ wi[h science and [cchnology -
should understand [hese fundamental
principles.

I do not know why conventional sci-
ence has been so rcsis[an[ (o DOE me[h-
ods. Perilaps  it is because DOE chai-
Icnges  fumiamcnlal  scien(ifrc practices
(one-variabie-a[-a-time expcr-imcn[a[ion,
for example) or because science views
empirical model building as funclamcn-
[ally dilTcrcnt and inferior (o the mccha-
nis[ic models of physics and cngincerirrg.
Perhaps i[ migh[ even be due to [hc poor
job s[a[is[icians  have done in cornmuni-
ca[ing  the potvcrful and elcgirn[ princi-
ples that arc (I1c real csscncc of DOE.

Wila(cvcr [hc reason. ignoring DOE is
a low. DOF.  is. in csscncc, a careful cx -
posi[ion  of Ihc scicnli[ic Inclhod.  II i s
fundamenlalty  conccmcd wilh how peo-
ple Icarn in a complex. inlcrac[ivc, and
noisy world—(ha[  is. in [hc real world. it
addresses [hc basic issues of what people
know ond how fhcy know it. Ignoring
such issues incvi[nbly invi[cs confusion
and incflicicncy.

An elaboration and rlefenso
In dlis and subsequcn[  columns, I will

claboralc  on and dcfcnci (I1c previous
slatcmcnts.  In doing so, I will avoid [hc
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convcn[ionnl presen[a[ion  of DOE as a
sui[c uf pmlor (ricks [hat improve quality
and productivity. Ins[cad, I will present
DOE as a logical and inevitable way to
deal with (he worid  as it is. Denying
DOE’s relevance denies basic realities
and thus compromises people’s under-
standing and [he effrcicncy  with which
[hey Icam.

Although [hcse columns wiil take on a
mcwc philosophical bent than usual, I
hope that you wiil ncvcrthcless  find thc]n
useful. If you already know about, prac-
tice. or [each DOE. I hope that [hcse
columns wili illuminate your knowledge
and help your efforts to convince o[hcrs
[o usc i[. If you do not use DOE, 1 hope
[hat they \vill compel you to Icam more
abou[ i[.

TWo scientific manlras
hly concern here is with [he scicn[ifrc

lcaming stmtcgy-how  to increase one’s
knowlccigc  of scicn[ific phenomena. But
wha[, cxaclly, are scientific phenomena?
More precisely, wha[ distinguishes scien-
tific phenomena from religion, art, phi-
losophy. emotion, favorilc frozen yogurt
flavor, and cvcrythirrg else [ha[  is not sci-
ence? Wi[houI engaging in a bl-oad philo-
sophical dcba[c, I propose two generai
dis[inguisbing characteristics:
●

✎

Science is conccmcd with bmrrcily  ob-
.tcnnb/c pheIIomaIr7. By (his, 1 mcwr
tha[ given normal human sensory abil-
ities and the proper equipment, any-
one should be able [o obscmc wha[ is
being described.
Scicncc is conccrncd  wi[h wpca/flb/e
p/wmnNc/w.  A unique cvcn[, no matter
bow compelling or no molter how
nl:Iny  pm)plc ohscwcd  it, is silllply nol
scicncc.
i know (1]0[  Ihcsc principles slill Icavc

:l-ay arcm. You might argue. for exam-
ple, [bat personality is an unobservable
constnlct. bu[ legitimate science ncvcr-
thclcss chamc[erizcs  a n d  s[udics it
[hrough behavior. Or you might argue
[bat [hc mc[coritc Ihat put a cralcr in your
back yard is cctlainly a unique event, but
as onc among n class of simiiar unique
events, i[ is ccrlainly  a phenomenon
amenable [o scientific s[udy. Clearly,
working OU[ (I1c  details hcm falls into the

hands of the philosophers-of science, and
I do not prcsrrme  any such expertise. So I
hope you wiil agree that observability
and repeatability arc, for the purposes
here, the essence of scicntilic rna[[ers.

Having said that, one arrives at the un-
derlying justification for DOE: Without
statistical thinking, the concepts of ob-
servability  and repeatability arc inherently
co)l/radic/o/y. Anything (hat is observed
is observed wilh variability. [ndced, not
only {iocs exnclly the same event never
happen in exactly [he same way [wice,
but even repeated observations-—-[ hat  is,
mcasuremcn[s--of  lhc same event vary.
So whal is meant when science ticrnands
tha( an observation be rcpea[able? How
rcpea[able is rcpcatablc? When is a result
the same or different---confirmation or
con[radicliotl?  These qucs[ions cannot be
cohcren[iy addressed without the franle-
work of stalis[ical lhinking.

.

●

✎

Lx( mc elucidate with a few examples:
Eureka! You think ti~at you’ve jusl dis-
covered a ncw way to make semicon-
ductor chips that run cooler. Of
course, following the observability
principle, you’ve got to actually make
some of these new chips and observe a
tcmpcra(ure difference. But wilen you
make more than one, you discover that
[hey do not all run at exactly (he same
lempcralure.  In facl, although most
run cooler than the existing chips,
some of tile existing chips are cooler
[ban some of (he new ones. Do the
chips run cooler?
You”ve got a grea[ new chocolate
souffld rccipc. The fliend wim gave i[
to you says it’s rcai easy and never
fails. You tly it. i[ fails! Being s[out of
Ilc:tll and chocola(c of mind. you lry il
again. Success! Since ii’s chocolate,
you ciccidc a (hirxi  triai is catlcd for.
Success again. Is Ihc recipe foolproof?
(For scicncc’s sake, 1 note thal a recent
mliclc claims that chocolate has more
than 800 scfmatc  cons(iluenls, which
makes i[ probably the most complex
subs(ancc in [hc human gustalory
Spcctrlml.)
You arc creating a complex cornputcr
model 10 dcscribc (I1c flow of blood
through small arteries. The fluid dy-
namic model requires (I1c fluid friction
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and elas[lclty  of the arterial walls as
input parameters (among others). Like
all measured physical constants, these
are known only within (he limits of
measurement precision. How does this
uncertainty propagate through your
mede[ and affect its performance and
your conclusions? Is this uncertainty
inherent in any measured physical
constant? (Be wary: Textbook calcula-
tions don’t always give exact answers.
Just because the fuzziness isn’t explic-
itly stated doesn’t mean it’s not there.)
What is the point of this litany?

Simply, that all observations involve un-
certainty. Therefore, to deal rationally
with the world as it is, you must define
what is meant by “same” or “different”
when all observations are blurred by
variability. Statistical thinking-DOE, in
particular-is required to do this.

The logic underlying statistical
thinking: A simple comparative
experiment

So how does statistics resolve these is-
sues? The underlying approach can be
clearly shown by considering a simple
comparative experiment. Since my pur-
pose is to focus on the concepts, not to
teach statistical metheds, I will omit the
mathematical details, In any case, I
should add that there are actually altern-
ative methods to this experiment and its
analysis that depend on the framework
that is chosen and the assumptions that
are made (such as the classical sampling,
Bayes, empirical Bayes, and decision
theories). Think of this in terms of how
different architects might approach a
home’s design. An environmentalist
might design a house one way, an archi-
tect working for a large builder another
way, and one who works for a cement
manufacturers’ association still a third
way. All of the houses would be func-
tional, but the rcsuhs would differ great-
ly. Of course, statistical approaches don’t
wry quile that much, but you should be
aware that there is no single right way to
translate the concepts discussed here into
specific methods.

Consider, then, the following compari-
son of two treatments. The treatments
might be two different suppliers of a raw
material, two different working sched-
ules, two different drugs, two different
teachers, or two different flowmeter de-
signs. Along with the two treatments,
there are one or more outcome variables
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that are used to measure the goodness of
the treatments. Such measurements can
be subjective (e.g., the taste of frozen yo-
gurt on a l-to-5 scale), categorical (e.g.,
pass or fail), or a continuous measure-
ment (e.g., time, temperature, voltage, or
cost). The kind of measurement affects
both the details of the design and the
analysis, but these matters are not of con-
cern here. To keep this example straight-
forward, assume that the outcome vari-
able is a continuous measurement.

How should you design the experi-
ment to determine which treatment gives
the better outcome? Of course, you can
always just test each treatment once and
compare the two outcomes. But if you
were to repeat the tests, each treatment
would give results that are somewhat dif-
fetmt than what occurred previously. In
other words, you cannot assume that two
treatments are different when their out-
comes differ because outcomes will dif-
fer even when a single treamlent is con-
tinually repeated. The same could be
said for averages if you repeat the tests
and compare the averages for the two
treatments. That is, if you were to repeat
the whole series, the next pair of aver-
ages would be different from the first
*.

Therein lies both the crux of, and the
solution to, the dilemma:

The only logically coherent way of
determining whether (and how) the
treatments dl~er is to compare the
variation in results from repeated
tests in which the treatments actual-
ly change wirh the variation in re-
sults from repeated tests in which
the treatments don’t change.
In practical terms, this means that you

must use the vwiabllity  that is seen }ci/hin
each treatment group as a baseline to
judge the observed differences between
the two groups. The entire decision-mak-
ing edifice of statistics is built on this
simple, common-sense foundation.

You might not actually test the two
treatments simultaneously. For example,
you might compare historical data on one
treatment with new tests on the second
treatment-but there are risks in doing
this. For example, other factors could
change that could also have an effect on
the results; thus, you risk confounding
the extraneous variation with differences
due to the treatments. Sometimes there
are ways to mitigate such possibilities,
bu~ in all cases, the replication principle
underlies the details.

.

The key idea behind replication is that
you must repeat the change to compare
the results that occur nilen the treuttnent
doesn ‘t change with the results that
occur  when it does. As obvious as this
principle seems, it is often at least partial-
ly violated in practice. How often have
you heard, “There’s no reason to spend
the time and effort to redo the tests. We
did it once, and we’ve seen what hap-
pens.”

To be fair, sometimes it is difficult or
impossible to obtain the kind of replica-
tions required to put the comparison on
firm footing. In fact, even when experi-
menters do replicate, they often do so in a
way that compromises the integrity of the
conclusion, which can lx seen in the fol-
lowing example.

Replication, real and imagined
Suppose that you want to compare

how fast two different weed killers de-
compose in soil. The outcome measure-
ment is obtained as follows: The chemi-
cals are mixed with several different
types of soils in plastic trays. The trays
are then placed outside at a test site. After
30 dtiys,  soil samples are taken from the
trays and the amount of chemical re-
maining in the soil is determined.

How should this procedure be carried
out to adhere to the replication principle?
The key idea is that you would like the
variability within the results for each
chemical to be the sanre as the variability
in the results between the two sets, ex-
cept for the differences due to the differ-
ent chemicals. That way you can be sure
that any possible (statistical) change in
variability between groups is due to the
chemical and not something else. Let’s
see what this means in terms of the nec-
essary experimental procedures:

Scenario 1: A large container of soil
type A is mixed with chemical No. 1 and
then poured into several trays. This pro-
cedure is then repeated with chemical
No. 2. The same set of procedures is car-
ried out for soil types B, C, and D. If 10
trays are mixed for each chemical and
soil type, does this give four groups of IO
replicates for each soil type as the base-
line for comparison?

The answer is no. Replicates are sup-
posed to have the same variability be-
tween the groups, except for the different
treatments, but in this scenario, the two
treatments were mixed in each soil at dif-
ferent times. Variability could have been
introduced if the instrument used to mix

the soil was different or used differently.
if different people mixed the soils, or if
the humidity conditions were different.
Within each treatment, however, these
conditions were fixed, since large batch-
es were mixed all at once. Thus, the
preparation variability between the
chemicals could well be greater than the
preparation variability within the chemi-
cals. This means that any difference seen
between the chemicals might be due to
preparation factors instead of the differ-
ent chemicals.

How can you adhere to the replication
principle? Ideally, you would want to re-
duce the preparation variability between
the chemicals so that it matches the vari-
ability within the chemicals, but that is
impossible. One person cannot possibly
mix each chemical with each soil type si-
multaneously. Thus, you have to make
the preparation variability within the
chemicals the same as the preparation
variability between the chemicals. This
can be done by one person preparing
each tray separately, using the same
preparation procedures and tools. In
doing so, the same variation in mixing
factors will result within each chemical
as well as between the chemicals.

Of course, experts in these matters
might say that the effect of possible vari-
ation in mixing is so small that the extra
effort is unjustified (and they might well
be right). But, strictly speaking, what this
scenario describes is often called dupli-
cation, not real replication. Duplicates
look like replicates, but they exhibit less
variability than they should—and this
can compromise the conclusions that are
reached.

Scenario 2: Suppose that one person
prepares all 40 of the soil trays separate-
ly, using the same preparation procedures
and tools. After 30 days, he or she takes
soil samples from the trays containing
one weed killer to determine the amount
of chemical remaining and then repeats
this process for the trays containing the
second weed killer. Do these data pro-
vide for a clear comparison?

Again, the answer is no because the
measurement variability between the
chemicals is greater than the measure-
ment variability within the chemicals.
That is, they are duplicates with respct
to the measurement process, not the
preparation process. You need to mea-
sure the results so that the variability due
to extraneous measurement noise within

(cont. on). I 11)
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each chemical and soil type is the same
as the measurement variability between
chemicals and soil types.

Scenario 3: Suppose that one person
prepares all 40 of the soil trays separate-
ly, using the same preparation procedures
and tools, and then randomly measures
the amount of chemical remaining in the
trays. Now do you have true replicates?

Surprisingly, the answer is still no be-
cause this experiment is omitting what is
probably the largest outside source of
variability that might affect the compari-
son. Do you know what it is?

The answer is that just one batch of
the first chemical is being compared with
just one batch of the second. The batch-
to-batch variability might be the largest
extraneous source of variability. Strictly
speaking, no matter what procedures are
used, all that can be concluded is that one
particular batch of the weed killer differs
from another particular batch. If you
wish to compfie  the first chemical in
general with the second chemical in gen-
eral—which, of course, you do—yo~
would have to replicate with several dif-
ferent batches of each chemical.

And therein lies the rub. Replication is
often dilllcult and sometimes impossible
to do because it severely compromises
the amount of experimentation that can
be done given limited time and re-
sources. For example, if the second weed
killer is an experimental batch being test-
ed for the first time, there ve~ likely are
no other batches. Even if there are, they
are made in entirely different circum-
stances with entirely different batch-to-
batch variability characteristics than the
standard (production mode) batches. In
such cases, you have no choice but to
violate the replication principle.

When the replication principle is vio-
lated, it is important to understand what
the risks we and realize that the experi-
mental conclusions are, at best, tentative,
no matter how well buttressed they are
with statistical legerdemain. For those
familiar with some of my earlier tirades,
this is yet another example of an analytic
study with which enumerative methods
alone cannot deal. Subject-matter exper-
tise and judgment must also be exercised.

Is there a better way to deal with
replication?

Replication seems to violate what
experimenters are taught is sound
experimental practice: Conduct your

(cont. 0)1 p. I 13)



cxperimcnls  in a Wny (hal rninilnizes  cx -
pcrimcntal variability. ForIunatcIy,  [his is
still sound advice, bu( (Iw replication
principle dcnxmds [hat (Iw variability be
minimized [{nijorm(~ over [hc procc,-
dures. Reducing ex~rimcntai  variability
widlin  wea[menk wflilc having i[ remain
between WrMncn[s compromises [he in-
Ie@ty of [hc learning process. i)iffcren[
results  judged 10 be dill_ercnt  because of
different treatments migh[ only va[y duc
(0 extraneous experimcn[id  vwiabilily.

From this discussion, it might appear
that experimenters must always conduct
comparative experiments in a way (hat
infla[es  within-treatment variability to
the same Ievcl as bclwccn-lrea(mcnt vari-
ability. Not only does [his require extra
time and efTorl, bu[ i[ also makes it more
difficult (0 draw clear conclusions.
Fortunately, variability infla(ion  is only
one approach, probably the crudcs[,  [o
performing experiments that arc consis-
tent with the replication principle. A bet-
[er approach for reducing variability uses
blocking. 1 will [alk aboo[ this in dc(ail in
my Augus[ column, but lc[ me sog,ges[
one version of how it could WOI k for [he
weed killer expaimen[.

In [he mixing proccdul-c, ins[cad of
mixing all 40 batches separately, you
could mix two trays  of each chemical
and soil type a[ a time (i.e., mix cighl
trays at one lime), wilh lhc same mixing
instrument, opcra[or,  humidi(y condi-
tions, and so ford~. “flis would be repea[-
cd five limes in all [0 get the sanle (old of
40 lrays. When an~lyzin:  (hc rcsul[s, you

would [hen compare [hc dif’fcrctlccs
among chemicals and soil [ypcs  among

(he four pairs widiin the groups  ofcight,
[I]creby  using this smaller expel-imcn[al
vwiabili(y m (}1c baseline for compari-
son. Formal analysis procedures SI1OUM
[hen be used to combine lhc rcsulls from
[hesc five overall replicates [0 draw (Iw
overall conclusion. One classical, numer-
ical fomlal analysis procedure is analysis
of variance, or ANOVA, wi(h which
many readers are undoub[cdly  familiar.
tn previous columns, however, 1 have
also shown how Icss formal graphical
mclbods-such as hierarchical do[
plo[s--can  also bc used (o engage  peo-
ple’s innate [)a[tem-rccogllitiotl  capabili-
ties to accomplish (he smnc cnr.1.

Onc imporlant conclusion that can bc
drawn from [his discussion is that (hc
Jejigl]  of an expcrimcn-[hc  dc(ailed
way in which i[ is conducted-dircc(ly
~ffcc[s  (I1c c o n c l u s i o n s  [ha{ can bc
reached and the da[a analysis procedures
{hat must be used 10 reach [hem. C.artful
(hough[  and planning should always be
dcvo[cd  IO {he design of an experiment in
odm 10 iwocccd  ill n way tha[ nlaximi7.cs
[I]e usc of scnrcc resources, lakes  advan-
(irgc of all available ways 10 rcducc
cxpcrimcn[al variability, anr.1, mos( im-
por[an[,  provides resulls [hat can be
cohcrcnl]y  analyzed according [0 (I1C
rcplicnlion principle. No ckr[a analysis,
no matter how sophis[ica(cd, can rescue a
badly dcsignw-i  cxperinlcn[ or prodocc
reliable infonna[ion  when [he replication
principle has been violated. That is why

s[a[is{ical experimental design is so
il]lportao[  and why it shoold  become pmt
of all cxpcrimcntcrs’  s[andard  prac[icc.
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